Reverse Kuleshov effect in cryptography

(silent slides)

The Kuleshov effect is a film editing (montage) effect.

The Kuleshov effect is a film editing (montage) effect.

It says viewers derive more meaning from the interaction of two sequential shots than from a single shot in isolation.

--- Wikipedia

Examples

pay attention to the facial expression of the man

Cheating sheet

Kuleshov effect: viewers derive more meaning from the interaction of two sequential shots than from a single shot.

(recap)

Kuleshov effect: viewers derive more meaning from the interaction of two sequential shots than from a single shot.

Reverse Kuleshov effect: for potentially correlated objects A and B, if A disappears, then B looks like nothing.

Reverse Kuleshov effect in cryptography: Here's an example

Recall preimage sampling in lattice cryptography

Given a matrix A, and the trapdoor of A, and an arbitrary vector Z,

Recall preimage sampling in lattice cryptography

Given a matrix A, and the trapdoor of A, and an arbitrary vector Z, can sample a discrete Gaussian preimage D s.t. AD = Z mod q

Question: how does D look like without A?

Kuleshov effect: Think of D as the man.

Kuleshov effect: Think of D as the man. D has is clearly the preimage of Z under function A given A.

Reverse Kuleshov effect:

Question: how does D look like without A?

Reverse Kuleshov effect in lattice cryptography

Reverse Kuleshov effect in lattice cryptography

Theorem: if A is hidden, D is indistinguishable from random Gaussian assuming LWE.

Reverse Kuleshov effect in lattice cryptography

Theorem: if A is hidden, D is indistinguishable from random Gaussian assuming LWE. (not true when A is not hidden, due to Kuleshov effect)

(caveat: thm holds when sampling a preimage of "Z+small noise" instead of Z)

Reverse Kuleshov effect in cryptography Wish you find examples in your area :)

Directors: Yilei Chen, Vinod Vaikuntanathan, Hoeteck Wee

More (irrelevant stuffs) in:

GGH15 Beyond Permutation Branching Programs: Proofs, Attacks, and Candidates https://eprint.iacr.org/2018/360