How to Synchronize Efficiently

Nathan Keller
Bar Ilan University

Joint work with Itai Dinur and Ohad Klein
Homomorphic Secret Sharing

- Introduced by Boyle, Gilboa and Ishai [BGI] (CRYPTO’16) as a (practical) alternative to FHE

- HSS allows homomorphic evaluation of a function to be distributed among two parties who do not interact with each other

- BGI constructed a group based HSS scheme
 - For functions f described by a branching program
Homomorphic Secret Sharing –cont.

• Received **Best Paper Award** at CRYPTO’16

• Follow-up works: Eurocrypt’17, ACM-CCS’17, ProvSec 17, ITCS’18

• Applications:
 • Private information retrieval (PIR) construction
 • Secure MPC with minimal interaction
 • Secure data access
 • Correlated randomness generation
A main open problem in HSS

• Scheme based on share conversion procedure which may err

• Mathematical formulation of main problem (in generic group model):

We are given \(n \) random numbers arranged in a line. Two parties start in two adjacent places, but don’t know which one is the first. Each party can query at most \(T \) numbers.

The goal of the players is to synchronize: choose the same number without any communication.

• Question: What is the minimal error probability (as a function of \(T \))?
[BGI16] Solution

- Each party queries T consecutive points and chooses minimum
- Assume $T=5$

A

15 77 11 104 68 39 94 53 33

B

15 77 11 104 68 39 94 53 33
Error occurs if minimum is on the edge
Error probability about $1/T$
[BGI16] Solution

- [BGI16] Error rate of $O(1/T)$
- Subsequent papers: No asymptotic improvement
Our results

• **An algorithm** which achieves $O(1/T^2)$ error rate

• **A matching lower bound** (in cryptographic groups): Result is optimal, unless DLOG in a short interval I can be solved faster than in $O(\sqrt{|I|})$ operations.
 • Currently not possible for standard cryptographic groups

• **Our techniques:**
 • Random walks (complex variants of Pollard’s Kangaroo method)
 • Martingales (algorithm analysis)
 • Discrete Fourier Analysis (lower bounds)
Applications

• **Asymptotic improvement** of computational complexity of the BGI HSS scheme
 • Relevant to applications such as PIR
• Non-cryptographic applications (work in progress with Boyle, Gilboa and Ishai)
 • String algorithms
 • Boolean functions

• **Full paper**: to appear at CRYPTO’18.
Thanks for listening!