ElectroEuro (noun)
| əˌlek tro ˈjurə |

Decentralized virtual currency to transfer energy within Europe in an equalized manner. Promotes a unified Europe and creates a low carbon economy.

This car consumes 100 ElectroEuros a year, it is low cost.
MODEL

- Universal
- Finite amount
- Transaction of energy is done through a tradeoff of it.
- Can be bought through goods that do not promote carbonization.

Electro Euro

Cost

- Distance to transport energy (a fixed cost).
- Quantity
MARKET

1. Surplus of energy per country and per energy source

2. Technology

A. Prediction / Estimation of surplus of energy (Predix’s machine learning)

 I. Production - availability of each source based on its features
 II. Consumption - by producer
 III. Cost
1. Auction with anonymous bidding on an interval

Principles
I. Prioritize green energy / stability
 • Consumer
 - Cheaper
 - Flexible trade rules (variety of things that could be exchanged for it, including non energy entities)
 - Delayed payment
 • Supplier
 - Debt forgiveness
 - Small loans
 - Fines for using polluting technologies
<table>
<thead>
<tr>
<th>Sources</th>
<th>Features</th>
<th>Green</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR</td>
<td>Weather</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>WIND</td>
<td>Weather, Location, Cost of operation</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>WATER</td>
<td>Availability, Location</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GEOTHERMAL</td>
<td>Difficulty of Harnessing</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>BIOENERGY</td>
<td>Volume</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NUCLEAR</td>
<td>Waste, Risk, Failures</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>FOSSIL</td>
<td>Pollution</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>HYDROGEN</td>
<td>Volume, Cost of production</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Each country determines its own pricing based on supply and demand, it is determined by 4 parameters:

- Greenness
- Stability
- Distance
- Availability
IMPLEMENTATION

Collect data from sensor network

\[\text{PREDIX}\]

Aggregate and analyze data

Generate markets

User interaction and pricing
SOLUTION BENEFITS:

Hybridization
• Combine different energies
• Solves the problem of resource availability

Mobility
• Obtain energy from nearest neighbor EU country rather than OPEC

Decentralized
• Pure free market
• Virtual currency prevents monopoly

Big data optimality
• Large scale sensor network generates volumes of data for optimality

Efficiency
• Close down or relocate inefficient energy sources
PRACTICAL IMPLICATIONS:

Makes green energy cheaper than polluting energy (by reducing costs)

Optimal pricing based on free market
• Reduces dependency on OPEC

Revenue driven production
• Not politically driven

Autonomy of countries
• OPEC imposes penalties
 o Low volume producing countries have limited negotiation power
 o Overproducing countries are fined

Prisoner's dilemma (cheating)
• Each nation individually:
 o Discounts its price
 o Exceeds its quota