We would like to announce:
We would like to announce:

Passwords are finally DEAD!!!
We would like to announce:

Passwords are finally DEAD!!!

Not like when Bill Gates said that,
We would like to announce:

Passwords are finally DEAD!!!

Not like when Bill Gates said that, and Google claimed that, and...
We would like to announce:

Passwords are finally DEAD!!

Not like when Bill Gates said that, and Google claimed that, and...
But really really dead
We would like to announce:

Passwords are finally DEAD!!!

Not like when Bill Gates said that, and Google claimed that, and...
But really really dead
Pushing up daisies
We would like to announce:

Passwords are finally DEAD!!!

Not like when Bill Gates said that,
and Google claimed that, and...
But really really dead
Pushing up daisies

But we can’t 😞
How to (not) Share a Password: Privacy preserving protocols for finding heavy hitters with adversarial behavior

Moni Naor Benny Pinkas Eyal Ronen
Compromise a User, Attack the Eco System

• Bad passwords do not only compromise the users

• Weak and popular passwords can be used for large scale attack
 • E.g. the Mirai attack
 • Easy to find IoT devices with Shodan like search engines

• Service provider liability?
Possible solutions

Panacea
Greek Goddess of Universal Remedy
Solution to all problems; Cure-all
Possible solutions

- Our suggestion - Blacklist Popular passwords
Passwords over time

• password -> passw0rd -> p@ssw0rd->password

• superman -> wonderwoman

• Different populations
Passwords over time

- `password` -> `passw0rd` -> `p@ssw0rd` -> `password`

- `superman` -> `wonderwoman`

- Different populations
Primum non nocere
First do (almost) no harm
Primum non nocere

First do (almost) no harm

• Publishing password blacklist can also help attackers
 • Publishing the blacklist is like publishing a code vulnerability
Primum non nocere

First do (almost) no harm

• Publishing password blacklist can also help attackers
 • Publishing the blacklist is like publishing a code vulnerability

• Leaking password information can hurt the user
 • One bit leakage doesn’t hurt the user a lot
 • Differential privacy can also help
How to (not) share a Password

• Identify and **blacklist** popular passwords (**heavy hitters**)
 • those were chosen by more than a fraction \(\tau \) of the users

• Server should not learn more than 1 bit on any user’s password
 • At most halves the number of password guesses

• Probability of False Negative (pFN) must be **negligible**
 • No popular password is missed

• Probability of False Positive (pFP) may be a small value
 • A legitimate password can be rejected with low probability
Previous work

• Privately Finding heavy hitters in many settings - [DNP+10, DNPR10, CSS11, CLSX12, DNRR15]
• Semi-honest version [BS15, BNST17]
• Non colluding mix servers – [MS17]

• DP password list with trusted server – [BDB16]
• Similar motivation, no DP – [SHM10]
The Malicious world

• Both users and server might be malicious

• A malicious server wants to learn the passwords

• Malicious users want to “hide” popular passwords
 • Adversary controls a coalition of users
Implementation and other usages

• We implemented the full malicious QR protocol on a RPi
 • Non interactive version runs in about 15 seconds, can run in background
 • Server computer can verify in about 0.5 seconds

• Same solution can be used in any heavy hitter problem with possible malicious setting
 • TOR network statistics
 • Device PIN/Pattern
 • Large service providers dynamic passwords statistics

eprint.iacr.org/2018/003